
International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 25
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Transaction Management in Service-Oriented

 Systems: Implementation
Mr.Bhanawase V.V Mr. Mane S.M Mr.Joshi A.S

Abstract— New generation business models impose additional requirements on the IT support of business processes. In particular, quickly
responding to new business requirements, continuously reducing IT cost, and dynamically integrating new business partners and customers are
highly demanded. Recently, the trend in software development has shifted from developing software systems to developing service-oriented systems
that are composed of ready to use services. The Service-Oriented Architecture (SOA) architectural style has been widely adopted in industry thanks
to its ability of providing seamless integration among software services Service-based applications are constructed by integrating heterogeneous
services that are developed using various programming languages and running on different operating systems from a range of service providers.
Services are loosely coupled entities, often designed under open-world assumptions, distributed across organizational boundaries, and executed
remotely at their service providers’ environment. They require a smoother transition from development to operation than traditional applications. The
objective of the paper is to look at the requirements of transaction management for Service oriented systems and the systematic requirements from
the starting point for an analysis of current standards and technologies in the field of Web services
Key Terms— Transaction Management, Service Oriented Computing, BPEL

1. INTRODUCTION

Although the Web was initially intended for human

use, most experts agree that it will have to evolve
probably through the design and deployment of modular
services to better support automated use. Services provide
higher-level abstractions for organizing applications for
large-scale, open environments. Thus, they help us
implement and configure software applications in a
manner that improves productivity and application
quality. Because services are simply a means for building
distributed applications, we cannot talk about them
without talking about service-based applications specif-
ically, how these applications are built and how services
should function together within them. The applications will
use services by composing or putting them together. An
architecture for service based applications has three main
parts: a provider, a consumer, and a registry. Providers
publish or announce their services on registries, where
consumers find and then invoke them. Standardized
Web service technologies are enabling a new generation of
software that relies on external services to accom- plish
its tasks. The remote services are usually invoked in an
asynchronous manner. Single remote operation
invocation is not the revolution brought by Service-
Oriented Computing (SOC), though. Rather it is the
possibility of having programs that perform complex
tasks coordinating and reusing many loosely coupled
independent services.
A new approach to software, such as that brought
by SOC, calls for new ways of engineering software

and for new problems to be solved. The central role of
these systems is played by services which are beyond a
centralized control and whose functional and, possibly,
non-functional properties are discovered at run-time.
The key problems are related to the issue of
discovering services and deciding how to coordinate
them. For instance, while planning to drive to a remote
city, one might discover that it is heavily snowing there,
and may want to obtain snow tyers. Therefore, one
needs to find a supplier and a transport service to have
the appropriate tires in a specific location by a specific
deadline. That is, various independent services are
composed into the form of a process, called the ‘get
winter tyres while traveling’ with the requirement that
we order the tyres if and only if we find also a transport
service for them. In other words, we require the services
of tyre ordering and tyre delivery to be composed in a
transactional manner. A service composition is a set of
operations belonging to possibly many services, and a
partial order relation defining the sequencing in which
operations are to be invoked. Such a partial order is
adequately represented as a direct graph. A service
transaction is a unit of work comprehending two or more
operations that need to be invoked according to a specific
transaction policy.A service transaction can span over
operations of one service or, more interestingly, of several
services.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 26
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig.. Service-based travel application

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 27
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

WS-Coordination specification describes an extensive
framework for providing various coordination protocols. The
WS-Atomic Transaction and WS-Business Activity
specifications are two typical Web transaction proto- cols.
They leverage WS-Coordination by extending it to define
specific coordination protocols for transaction processing.
The former is developed for simple and short-lived Web
transactions, while the latter for complex and long-
lived business activities. Finally, the Business Process
Execution Language (BPEL) is a process- based composition
specification language. In order to develop reliable Web
services compositions, one needs the integration of
transaction standards with composi- tion language
standards such as BPEL. Unfortunately, these are currently
separate specifications.

This paper has a double goal: The first one is to look at
the requirements of transaction management for Service-
oriented systems. The systematization of requirements is
the starting point for an analysis of current standards and
technologies in the field of Web services. The second goal
of the paper is to propose a framework for the
integration of BPEL with transaction protocols such as WS-
AtomicTransaction and WS-BusinessActivity.

The present work extends our survey and requirement
analysis for service transactional systems and our proposal
of the XSRL language for handling requests against
service compositions. In XSRL a construct is defined to
express atomicity of services execution, though no means
for recovering from failures is provided.
The rest of the paper is organized as follows. First, we

Introduce Service-based travel application example. We
Continue by looking at web services and service oriented
Architecture in Section 2 the proposed approach to
Transaction management is presented in Section.
2. WEB SERVICES

Most service-based or business-to-business (B2B)
applications would like to have the data consistency and
correctness guarantees provided by existing transaction-
processing platforms. Unfortunately, achieving these goals is
difficult because interactions between the participants may
be complex—involving multiple parties, spanning different
organizations, and, most notably, lasting for hours or even
days. For example, a transaction for a computer parts
ordering application may involve different suppliers and
may not be complete until all parts have been delivered.
Should the various suppliers block part requests until this
transaction is complete? Multiple reasons prevent such
services from locking their back-end data resources for long
durations: for example, the in ability to service additional
incoming requests, and the potential for enabling denial-of-
service attacks.

2.1 Web Services Transaction Architectures
 Most web services transaction protocols build on the
existing concepts of a transaction coordinator, participants,

and a transaction context as shown in Figure 2.. The general
concepts behind these protocols are analogous to those of
traditional transaction systems.

As the figure indicates, the application interacts with the
coordinator in some fashion (the specifics are unique to the
transaction protocol utilized) to initialize a transaction and
create an associated transaction context; the transaction
context is propagated between the clients and the services,
providing a flow of context information required to identify
a transaction with which work should be associated (as well
as the location of the coordinator). The propagation of the
context may occur transparently to the client and services.

Fig . - Web services transactions

3. BUISNESS PROCESS EXECUTION LANGUAGE

The Business Process Execution Language (BPEL) for Web
Services was proposed by BEA, IBM and Microsoft. The
BPEL is a language for describing the behavior of business
processes based on Web services. For the specification of a
business process, BPEL provides activities and distinguishes
between basic activities and structured activities. The basic
activities include (receive) to provide web service operations
and (invoke) to invoke web service operations. A structured
activity defines a causal order on the basic activities and can
be nested in another structured activity itself..
BPEL plays an important role in the web service standards
family and is used in concert with a number of other
standards. The Web Services Description Language (WSDL)
is used to define the interface of a web service. BPEL relies
on WSDL to ensure that the invocation of a service is
correctly typed and also to deduce the synchronization
behavior of this invocation. A web service is invoked by a
BPEL interpreter using the Simple Object Access Protocol
(SOAP), which defines the exchange of messages that are
encoded in the eXtended Markup Language (XML) . The
structure of these messages, as well as the syntax of BPEL
itself is defined using XML Schemas.

4. TRANSACTION API

 In a J2EE environment, the transaction manager has to
communicate with the application server, the application
program, and the resource managers, using a well-defined
and standard API. The Java Transaction API (JTA) is defined

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 28
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

precisely for this purpose. The JTA defines a set of high-level
interfaces that describe the contract between the transaction
manager and three application components that interact with
it: the application program, resource manager, and
application server.
A. Java Transaction Service
The JTA specification’s main purpose is to define how a
client application, the application server, and the resource
managers communicate with the transaction manager.
Because JTA provides interfaces that map to X/Open
standards, a JTA compliant transaction manager can control
and coordinate a transaction that spans multiple resource
managers (distributed transactions).
JTA does not specify how a transaction manager is to be
implemented, nor does it address how multiple transaction
managers communicate with each other to participate in the
same transaction. That is, it does not specify how a
transaction context can be propagated from one transaction
manager to another. The Java Transaction Service (JTS)
specification addresses these concepts.
 JTS specifies the implementation contracts for Java
transaction managers. It is the Java mapping of the CORBA
Object Transaction Service (OTS) 1.1 specification. The OTS
specification defines a standard mechanism for generating
and propagating a transaction context between transaction
managers, using the IIOP protocol. JTS uses the OTS
interfaces (primarily org.omg.Cos Transactions and
org.omg.Cos TSPortability) for interoperability and
portability. Because JTS is based on OTS, it is not unusual to
find implementations that support transactions propagating
from non-Java CORBA clients as well.
A commonly used method in practice for supporting Web
service transactions resorts to generic middleware. Some
representative transaction management tools, such as IBM
Web services Atomic Transaction for Web Sphere
Application Server, JBoss Web service Transactions, and
Apache Kandula, have employed.
This method to support distributed Web services atomic
transactions. These tools focus on the implementation of
transactions within some types of application servers using
the Java Transaction API (JTA).
JTA provides three main interfaces, namely User Transaction
interface, Transaction Manager Interface and Transaction
interface. These interfaces share transaction operators, such
as commit (), rollback (), suspend (), resume () and enlist ().
The application servers act as Transaction Manager, and
implement.
The coordination services described by the WS-Coordination
specification .This method is practical and reuses the
available generic middleware. Though, it does not take into
account transaction management within BPEL processes. In
Loechner presents a survey of issues in implementing
transactions with service technology and proposes a model-
based approach to managing transactions.

Fig - JTS transaction manager components

5. SOLUTION FOR TRANSACTION MANAGEMENT
IN SERVICE ORIENTED SYSTEM

This part describes the System architecture and High level
design of transaction management application. High level
Design of the application shows how the whole of the
process going on from the user request for an order to
booking.
 The system architecture in Figure-4 describes an enterprise
level transaction between user, distributer and suppliers. The
designed architecture based on distributed application
processing in multiple tiers. All the distributed services are
performs information exchange in support of web service
which acts as a middleware. Enterprise level services are
used to manage the transaction integrity service within user
session.

5.1 SYSTEM MODULES
The designed system architecture in Figure-3.1 has the
following modules:

1. User Interface
2. Transaction Manager
3. Distribution Service
4. Suppliers Service

1. User Interface: User interface module provides the user
input screens. It takes the user requests and communicates
with Transaction Manager for finding the availability of the
requested order in the distributed suppliers. User interface
provide inputs as Product name, delivery location and
quantity of the product.

2.Transaction Manager: Transaction Manager on receive of
request form user communicate with the distributed
distribution service with support of web service. It
implements Java Messaging service to communicate with the
distribution service. On receive of reply from distribution

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 29
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

service it communicate with enterprise service to perform the
integrity transaction in support java Transaction API and
JDBC API for database transaction.

User Interface
Application

Web
Service

Distribution
Service

Supplier1
Service

Supplier2
Service

Supplier3
Service

Users

Transaction
Manager

DB

Enterprise
Service DB

DB

DB

DB

1. User request and
Reply

2

3

4

4

4

5

5
5

8. Database
Transaction Update

6

7

Fig .System Architecture

3.Distribution Service: Distribution service is a distributed
service which maintains the suppliers’ services information.
On receiving the request from transaction manager it
communicates with the registers suppliers with support of
web service. It implements Java Messing Services for
exchanging the information.

4.Suppliers Service: Suppliers service are also like
distribution service which runs in distributed location. It
maintains the product, location and carrier information for
supply to the users. On receiving a request from distribution
service it evaluates the available stock of the product and
carriers for the delivery location requested.

6. IMPLEMENTATION

6.1 Technology overview
A. Java Technology
Java is a programming language originally developed by
Sun Microsystems and released in 1995 as a core component
of Sun's Java platform. The language derives much of its
syntax from C and C++ but has a simpler object model and
fewer low-level facilities. Java applications are typically
compiled to byte code which can run on any Java virtual
machine (JVM) regardless of computer architecture. Java is
both a programming language and a platform. Java is fully
object-oriented and everything in Java is an object. The goal
of Java designers was to develop a language whereby the
programmer could write the code once and could run this
code anywhere, anytime forever.
B. JDBC
JDBC (Java Database Connectivity) provides a standard
library for accessing relational databases. Using the JDBC

API, you can access a wide variety of different SQL
databases with exactly the same Java syntax. It is important
to note that although JDBC standardizes the mechanism for
connecting to databases, the syntax for sending queries and
committing transactions, and the data structure representing
the result, it does not attempt to standardize the SQL syntax.
So, you can use any SQL extensions your database vendor
supports. However, since most queries follow standard SQL
syntax, using JDBC lets you change database hosts, ports,
and even database vendors with minimal changes in your
code. JDBC API is being used more and more in the middle
tier of three-tier architecture. The JDBC API is also what
allows access to a data source from a Java middle tier.
C. Java Messaging Service
The Java Message Service (JMS) API is a messaging standard
that allows application components based on the Java 2
Platform, Enterprise Edition (J2EE) to create, send, receive,
and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

The JMS API supports two models:
• point-to-point or queuing model
• publish and subscribe model

In the point-to-point or queuing model, a producer posts
messages to a particular queue and a consumer reads
messages from the queue. Here, the producer knows the
destination of the message and posts the message directly to
the consumer's queue.

The publish/subscribe model supports publishing messages
to a particular message topic. Zero or more subscribers may
register interest in receiving messages on a particular
message topic. In this model, neither the publisher nor the
subscriber knows about each other.
D. Java Transaction API
The Java Transaction API (JTA), one of the Java Enterprise
Edition (Java EE) APIs, enables distributed transactions to be
done across multiple X/Open XA resources in a Java
environment. The Java Transaction API consists of three
elements: a high-level application transaction demarcation
interface, a high-level transaction manager interface intended
for an application server, and a standard Java mapping of
the X/Open XA protocol intended for a transactional
resource manager.
The javax.Transaction. User Transaction interface provides
the application the ability to control transaction boundaries
programmatically. This interface may be used by Java client
programs or EJB beans.

The UserTransaction.begin() method starts a global
transaction and associates the transaction with the calling
thread. The transaction-to-thread association is managed
transparently by the Transaction Manager.

Support for nested transactions is not required. The
UserTransaction.begin method throws the NotSupported
Exception when the calling thread is already associated with

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 30
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

a transaction and the transaction manager implementation
does not support nested transactions.

6.2 Web Service Interface
To implement handle the message exchange we implement
JMS Web services as middleware. An implementation of JMS
interfaces for a Message Oriented Middleware (MOM)
provided by JMS Providers which are implemented as either
a Java JMS implementation or an adapter to a non-Java
MOM. The elements of JMS Service are:
JMS client : An application or process that produces and/or
receives messages.
• JMS producer : A JMS client that creates and sends

messages.
• JMS consumer : A JMS client that receives messages.
• JMS message : An object that contains the data being

transferred between JMS clients.
• JMS queue : A staging area that contains messages that

have been sent and are waiting to be read. As the name
queue suggests, the messages are delivered in the order
sent. A message is removed from the queue once it has
been read.

• JMS topic : A distribution mechanism for publishing
messages that are delivered to multiple subscribers

6.3 Session Interface
To implement Session interface we need an EJB Application
servers to support the UserTransaction interface and user
sessionThe UserTransaction interface is exposed to EJB
components through either the EJBContext interface using
the getUserTransaction method, or directly via injection
using the general @Resource annotation. Thus, an EJB
application does not interface with the Transaction Manager
directly for transaction demarcation; instead, the EJB bean
relies on the EJB server to provide support for all of its
transaction work as defined in the Enterprise JavaBeans
Specification.

7.RESULTS
7.1 User interface screen

Fig 7.1– User Input Interface with user input as Product1,
Location2 and Quantity 4

7.2 Middleware service

Fig 7.2 – Middleware Service – Service Distributors Service

The figure 7.2 will shows the interaction of the truncation
manager with suppliers to evaluate the user input and there
specified process requirements, it the supplier supplied
items, location and item quality matches then the supplier
values will identified as the available person, other wise it
will indicate the supplier non available for the user to
process the request.

7.3 Distributed Services Screen

Fig 7.3 – Distributed Service – Supplier Service

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 31
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The figures 7.3 will gives the description about the user
interaction with the different suppliers on the similar time to
process the user input request truncation evaluation
proposes. The supplier process module will evaluate the user
request and check the stock status and the quality of the
item, if all requirements matches it will give the response as
the available else the response is not available

Fig 7.4 – User output Screen Interface

The figure 7.4 will show the user request process by which
supplier and that location of the supplier and quantity of the
items along the order will observe on the figure.

8. CONCLUSION
In this paper we explorer the key requirements of transaction
management in Service-oriented systems and implement a
order processing transaction management approach for Web
service compositions. The key to implementing transaction
management is to consider the combination of business logic
with transactions, taking into account the challenges that
make it impossible to directly apply transaction models to all
processes.

REFERENCES

 [1] WS-BA, “Web Services Business Activity Framework (WS Business
Activity), Version 1.1,” Arjuna Technologies Ltd, BEA Systems, Hitachi
Ltd., IBM, IONA Technologies and Microsoft, Tech. Rep., 2007

 [2] BPEL, “Business Process Execution Language for Web Services
Version 1.1,” IBM, Microsoft, BEAT, SAP and Siebel Systems, Tech. Rep.,
2003.

 [3] [Brown06] Brown W. And Cantor, M. SOA Governance: How to
Oversee Successful Implementation through Proven Best Practices and
Methods.IBM White Paper.

 ftp://ftp.software.ibm.com/software/rational/web/whitepapers/1070
6900_SOA_gov_model_app_v1f.pdf

 [4] A. Lazovik .M. Aiello, and M. Papazoglou, “Planning and monitoring
the execution of Web service requests,” International Journal on Digital

Libraries, vol. 6, no. 3, pp. 235-246, 2006.
 [5] M. Aiello and A. Lazovik, “Monitoring assertion-based business

process,” International Journal of Cooperative Information Systems,
vol. 15, no. 3, pp. 359-390, 2006.

 [6] B. Haugen and T. Fletcher, “Multi-party electronic business
transactions. Version 1.1,” UN, Tech. Rep., 2002.
[7] M.Little, “Transactions and web services,” Communication of the
ACM, vol. 46, no. 10, pp. 49-54, 2003.
[8] OASIS, “Business transaction protocol,” OASIS, Tech.Rep., 2004.

[9] BPEL, “Business Process Execution Language for Web Services
Version 1.1,” IBM, Microsoft, BEAT, SAP and Siebel Systems, Tech. Rep.,
2003.
[10] C. Sun, D. Hammer, G. Biemolt, and H. Groefsema, “An evaluation
of desctiption- and management- standards and languages for Web
service transactions,” Univ. of Groningen/ SeCSE Project, Tech. Rep.,
2006.
[11] [Gold-Bernstein05] Gold-Bernstein, B. and So, G.Integration and
SOA: Concepts, Technologies and best Practices.
[12] [High05] High, R., Kinder, S., and Graham, S. IBM’s SOA
Foundation: An Architectural Introduction and Overview.
November 2005. http://download.boulder.ibm.com/ ibmdl/pub/
software/dw/webservices/wssoawhitepaper.pdf [IBM06]
[13] B. Haugenand T. Fletcher, “Multi party electronic business
transactions.Version1.1”UN Tech.Rep.,2002.
[14]M. Little, “Transactions and web services” Communication of the
ACM,vol.46,no.10,pp.49-54,2003.
[15] C.Ouyang,E.Verbeek ,W.M. vander Aalst ,S. Breutel , M.Dumas,
andA.Ter Hofstede, “Formal semantics and analysis of control in
BPEL” Sci. Computer. Program, vol.67
pp. 162-198,2007.
[16] G.Chiola,“Area chability graph construction algorithm based on
canonical transition ring count vectors ,” in Petri Net sand
Performance Models, 2001,pp.113-122.
[17] S. Consortium, “http://www.secse-project.eu/,” European Union,
Tech. Rep., 2005-2007.
[18] The SECSE Team, “Designing and deploying service-centric
systems: The se cse way.” in Service Oriented Computing: a look at the
Inside (SOC@Inside’07), 2007.
[19] Various Authors, “Report on methodological approach to designing
service compositions (final), version 4.0 Se CSE A3.D3,” ESI, CA and CE-
FRIEL, Tech. Rep., 2005, http://www.secseproject.eu/.
[20] “Report on methodological approach to design service compositions
(v2.0) Se CSE A3.D3.2.b,” CEFRIEL Uni sannio, Tech. Rep., 2006,
http://www.secse-project.eu/.
[21] Active BPEL, “Active bpel engine 2.0,” 2009,
http://www.activebpel.org.

IJSER

http://www.ijser.org/
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/10706900_SOA_gov_model_app_v1f.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/10706900_SOA_gov_model_app_v1f.pdf
http://www.secseproject.eu/
http://www.secse-project.eu/

	2.1 Web Services Transaction Architectures

